Solutions and Their Properties

STUDY LIST From Paul Groves

Separation Techniques

	Identify the property that is being exploited when
	using various separation techniques such as
	decanting, filtration, distillation, chromatography
	Explain the difference between paper
	chromatography, TLC chromatography, and
	column chromatography and when you would use
	one versus the other.
	Identify unknown compounds based on
	information given about the separation technique.
	Example – the more polar compound will vaporize
	at a higher temperature during the distillation
	process, or the polar substance will travel a shorter
	distance on a polar chromatography substrate etc.
Col	ncentration Units
	Define solute solution
	Define solute, solvent, and solution
ш	Define molarity, molality, mole fraction, weight
	percent, ppm
	Convert one concentration into another
Ш	Realize that density is sometimes needed for
_	calculations involving molarity
Ш	Dilutions can be calculated using $M_1V_1 = M_2V_2$
T	
	minology
Ш	Define unsaturated, saturated, and supersaturated.
	(DEMO—Hand warmer)
ш	Define and identify electrolytes versus non-
	electrolytes.
ш	Compare these terms with dilute and concentrated.
	(AgNO ₃ 9/0 g/100g & AgC1.0012/ g/100g)
	Solids and gases are called soluble and insoluble.
Ш	Liquids are called miscible and immiscible.
_	(TOY—Ocean Waves)
\Box	Define dissolution versus dissociation.

Solubility

	Some ions result in a compound always	
	being soluble in water. Know that list!	
	Identify the ways to change solubility for	
	solids and gases. Changing temperature,	
	pressure, particle size, etc.	
	Write net ionic equations including phases	
	by using solubility rules.	
	Draw and/or analyze particulate diagrams	
	for solubility questions.	
	Describe (and calculate) how the presence	
	of a common ion can effect the degree of	
	dissociation.	
	th of the Properties of Solutions	
	Henry's Law solubility of a gas in a	
	liquid is proportional to the pressure of the	
_	$gas.$ $S_g = k_H P_g$	
	Know and be able to do simple problems	
	with Raoult's Law: $P_{solvent} = X_{solvent}P^{\circ}_{solvent}$	
	to figure out the vapor pressure above a	
_	solution	
⊟-	Recognize that a volatile solute (esp.	
	alcohol) will add to the vapor pressure and	
	LOWER the BP whereas solutions of solids	
	in water RAISE the BP.	
Colligative Properties - More Math		
Elevation of the PD AT.		
	$\Delta T_1 = k_1 - m$ (k ₁ = the molal boiling	
	$p_{\text{oint elevation constant}} = AT_{\text{b}} - (A_{\text{b}} - A_{\text{b}})$	
₽	Depression of the FP/MP_AT _f	
	$\Delta T_{f} = k_{f} \cdot m$ ($k_{f} = the molal freezing$	
	О	

point depression constant = $\Delta T_{f} @ 1 m$) This can be used to determine molar mass:

 $\frac{M}{\Delta T} = \frac{K_f \times w \times 1000}{\Delta T \times W}$

```
(COMPUTER SIMULATION RAST)
```

```
Substances that split into ions have a multiplying effect on colligative properties.
(elevation of BP in sol'n: sugar vs salt)
This is called the van't Hoff factor, i. Ex. NaCl, i=2; CaCl<sub>2</sub>, i=3
```

(simple for dilute solutions)

Flashback to Thermochemistry

 \Box Heats of solution =

Requires energy to break solvent-solvent & solutesolute bonds – Energy released by making solutesolvent bonds (esp. hydration) (can be exothermic or endothermic) (endothermic implies Entropy is impt) (DEMO—baggies of NH₄Cl and CaCl₂)

Ksp

- Define Ksp and molar solubility.
- □ Understand the difference between Ksp and molar solubility in terms of why molar solubility can be more useful in a practical way.
- Perform calculations involving Ksp and molar solubility.
- Perform Ksp problems that involve the common ion effect.